Sexual Reproduction

Another way that a new organism can be produced is by sexual reproduction. During sexual reproduction, two sex cells, sometimes called an egg and a sperm, come together. Sex cells, like those in Figure 9, are formed from cells in reproductive organs. Sperm are formed in the male reproductive organs. Eggs are formed in the female reproductive organs. The joining of an egg and a sperm is called fertilization, and the cell that forms is called a zygote (ZI goht). Generally, the egg and the sperm come from two different organisms of the same species. Following fertilization, mitosis and cell division begins. A new organism with a unique identity develops.

Diploid Cells
Your body forms two types of cells—body cells and sex cells. Body cells far outnumber sex cells. Your brain, skin, bones, and other tissues and organs are formed from body cells. Recall that a typical human body cell has 46 chromosomes. Each chromosome has a mate that is similar to it in size and shape and has similar DNA. Human body cells have 23 pairs of chromosomes. When cells have pairs of similar chromosomes, they are said to be diploid (DIH ployd).

Figure 9
A human egg and a human sperm at fertilization.
Haploid Cells Because sex cells do not have pairs of chromosomes, they are said to be **haploid** (hap-lloyd). They have only half the number of chromosomes as body cells. Haploid means “single form.” Human sex cells have only 23 chromosomes—one from each of the 23 pairs of similar chromosomes. Compare the number of chromosomes found in a human sex cell to the full set of human chromosomes seen in Figure 6.

Meiosis and Sex Cells

A process called **meiosis** (mi OH sus) produces haploid sex cells. What would happen in sexual reproduction if two diploid cells combined? The offspring would have twice as many chromosomes as its parent. Although plants with twice the number of chromosomes as the parent plants are often produced, most animals do not survive with a double number of chromosomes. Meiosis ensures that the offspring will have the same diploid number as its parent, as shown in Figure 10. After two haploid sex cells combine, a diploid zygote is produced that develops into a new diploid organism.

During meiosis, two divisions of the nucleus occur. These divisions are called meiosis I and meiosis II. The steps of each division have names like those in mitosis and are numbered for the division in which they occur.
Cell Reproduction

CHAPTER 4

Meiosis I

Before meiosis begins, each chromosome is duplicated, just as in mitosis. When the cell is ready for meiosis, each duplicated chromosome is visible under the microscope as two chromatids. As shown in Figure 11, the events of prophase I are similar to those of prophase in mitosis. In meiosis, each duplicated chromosome comes near its similar duplicated mate. In mitosis they do not come near each other.

In metaphase I, the pairs of duplicated chromosomes line up in the center of the cell. The centromere of each chromatid pair becomes attached to one spindle fiber, so the chromatids do not separate in anaphase I. The two pairs of chromatids of each similar pair move away from each other to opposite ends of the cell. Each duplicated chromosome still has two chromatids. Then, in telophase I, the cytoplasm divides, and two new cells form. Each new cell has one duplicated chromosome from each similar pair.

Meiosis II

The two cells formed during meiosis I now begin meiosis II. The chromatids of each duplicated chromosome will be separated during this division. In prophase II, the duplicated chromosomes and spindle fibers reappear in each new cell. Then in metaphase II, the duplicated chromosomes move to the center of the cell. Unlike what occurs in metaphase I, each centromere now attaches to two spindle fibers instead of one. The centromere divides during anaphase II. The chromatids separate and move to opposite ends of the cell. Each chromatid now is an individual chromosome. As telophase II begins, the spindle fibers disappear, and a nuclear membrane forms around each set of chromosomes. When meiosis II is finished, the cytoplasm divides.

Figure 11 Meiosis has two divisions of the nucleus—meiosis I and meiosis II.

Determine how many sex cells are finally formed after both divisions are completed.

Meiosis I

What happens to duplicated chromosomes during anaphase I?

Meiosis II

The two cells formed during meiosis I now begin meiosis II. The chromatids of each duplicated chromosome will be separated during this division. In prophase II, the duplicated chromosomes and spindle fibers reappear in each new cell. Then in metaphase II, the duplicated chromosomes move to the center of the cell. Unlike what occurs in metaphase I, each centromere now attaches to two spindle fibers instead of one. The centromere divides during anaphase II. The chromatids separate and move to opposite ends of the cell. Each chromatid now is an individual chromosome. As telophase II begins, the spindle fibers disappear, and a nuclear membrane forms around each set of chromosomes. When meiosis II is finished, the cytoplasm divides.
Summary of Meiosis Two cells form during meiosis I. In meiosis II, both of these cells form two cells. The two divisions of the nucleus result in four sex cells. Each has one-half the number of chromosomes in its nucleus that was in the original nucleus. From a human cell with 46 paired chromosomes, meiosis produces four sex cells each with 23 unpaired chromosomes.

Applying Science

How can chromosome numbers be predicted?

Offspring get half of their chromosomes from one parent and half from the other. What happens if each parent has a different diploid number of chromosomes?

Identifying the Problem
A Grevy’s zebra and a donkey can mate to produce a zonkey, as shown below.

Solving the Problem
1. How many chromosomes would the zonkey receive from each parent?
2. What is the chromosome number of the zonkey?
3. What would happen when meiosis occurs in the zonkey’s reproductive organs?
4. Predict why zonkeys are usually sterile.
You received a haploid (n) set of chromosomes from each of your parents, making you a diploid (2n) organism. In nature, however, many plants are polyploid—they have three (3n), four (4n), or more sets of chromosomes. We depend on some of these plants for food.

TRIPLOID Bright yellow bananas typically come from triploid (3n) banana plants. Plants with an odd number of chromosome sets usually cannot reproduce sexually and have very small seeds or none at all.

HEXAPLOID Modern cultivated strains of oats have six sets of chromosomes, making them hexaploid (6n) plants.

TETRAPLOID Polyploidy occurs naturally in many plants—including peanuts and daylilies—due to mistakes in mitosis or meiosis.

OCTAPLOID Polyploid plants often are bigger than nonpolyploid plants and may have especially large leaves, flowers, or fruits. Strawberries are an example of octaploid (8n) plants.
Mistakes in Meiosis Meiosis occurs many times in reproductive organs. Although mistakes in plants, as shown in Figure 12, are common, mistakes are less common in animals. These mistakes can produce sex cells with too many or too few chromosomes, as shown in Figure 13. Sometimes, zygotes produced from these sex cells die. If the zygote lives, every cell in the organism that grows from that zygote usually will have the wrong number of chromosomes. Organisms with the wrong number of chromosomes may not grow normally.

Figure 13 This diploid cell has four chromosomes. During anaphase I, one pair of duplicated chromosomes did not separate. Infer how many chromosomes each sex cell usually has.

Summary

Sexual Reproduction

- During sexual reproduction, two sex cells come together.
- Mitosis and cell division begin after fertilization.
- A typical human body cell has 46 chromosomes, and a human sex cell has 23 chromosomes.

Meiosis and Sex Cells

- Each chromosome is duplicated before meiosis, then two divisions of the nucleus occur.
- During meiosis I, duplicated pairs of chromosomes are separated into new cells.
- Chromatids separate during meiosis II.
- Meiosis I and meiosis II result in four sex cells.

Self Check

1. Describe a zygote and how it is formed.
2. Explain where sex cells form.
3. Compare what happens to chromosomes during anaphase I and anaphase II.
4. Think Critically Plants grown from runners and leaf cuttings have the same traits as the parent plant. Plants grown from seeds can vary from the parent plants in many ways. Why can this happen?
5. Make and use a table to compare mitosis and meiosis in humans. Vertical headings should include: What Type of Cell (Body or Sex), Beginning Cell (Haploid or Diploid), Number of Cells Produced, End-Product Cell (Haploid or Diploid), and Number of Chromosomes in New Cells.